Weighted Genomic Distance Can Hardly Impose a Bound on the Proportion of Transpositions
نویسندگان
چکیده
Genomic distance between two genomes, i.e., the smallest number of genome rearrangements required to transform one genome into the other, is often used as a measure of evolutionary closeness of the genomes in comparative genomics studies. However, in models that include rearrangements of significantly different “power” such as reversals (that are “weak” and most frequent rearrangements) and transpositions (that are more “powerful” but rare), the genomic distance typically corresponds to a transformation with a large proportion of transpositions, which is not biologically adequate. Weighted genomic distance is a traditional approach to bounding the proportion of transpositions by assigning them a relative weight α > 1. A number of previous studies addressed the problem of computing weighted genomic distance with α ≤ 2. Employing the model of multi-break rearrangements on circular genomes, that captures both reversals (modelled as 2-breaks) and transpositions (modelled as 3breaks), we prove that for α ∈ (1, 2], a minimum-weight transformation may entirely consist of transpositions, implying that the corresponding weighted genomic distance does not actually achieve its purpose of bounding the proportion of transpositions. We further prove that for α ∈ (1, 2), the minimum-weight transformations do not depend on a particular choice of α from this interval. We give a complete characterization of such transformations and show that they coincide with the transformations that at the same time have the shortest length and make the smallest number of breakages in the genomes. Our results also provide a theoretical foundation for the empirical observation that for α < 2, transpositions are favored over reversals in the minimum-weight transformations.
منابع مشابه
Implicit Transpositions in DCJ Scenarios
Genome rearrangements are large-scale evolutionary events that shuffle genomic architectures. The minimal number of such events between two genomes is often used in phylogenomic studies to measure the evolutionary distance between the genomes. Double-Cut-and-Join (DCJ) operations represent a convenient model of most common genome rearrangements (reversals, translocations, fissions, and fusions)...
متن کاملA special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملInverse Maximum Dynamic Flow Problem under the Sum-Type Weighted Hamming Distance
Inverse maximum flow (IMDF), is among the most important problems in the field ofdynamic network flow, which has been considered the Euclidean norms measure in previousresearches. However, recent studies have mainly focused on the inverse problems under theHamming distance measure due to their practical and important applications. In this paper,we studies a general approach for handling the inv...
متن کاملTwo Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011